The effect of neurotrophin-3/chitosan carriers on the proliferation and differentiation of neural stem cells.

نویسندگان

  • Xiaoguang Li
  • Zhaoyang Yang
  • Aifeng Zhang
چکیده

In this study, the behavior of neural stem cells from the newborn rat spinal cord was compared at neurosphere level after the addition of neurotrophin-3 (NT-3) once or daily, blank chitosan carriers, or NT-3-chitosan carriers respectively. We found that NT-3 enhanced the viability and differentiation of neural stem cells, but as NT-3 has an extremely short half-life at 37 degrees C, in order to maintain the NT-3-mediated proliferation and differentiation effects on neural stem cells, NT-3 needed to be added to the medium every 24 h. However, NT-3-chitosan carriers dramatically increase the differentiation percentage of neural stem cells into neurons, which includes GABAergic and as cholinergic neurons. Although blank chitosan carriers also showed good biocompatibility to the neural stem cells, they induced the differentiation of these cells into neurons at a much lower percentage than the daily addition of NT-3 or the NT-3-chitosan carriers. Our results suggest that NT-3-chitosan carriers may not only maintain the viability of neural stem cells and increase their differentiation percentage into neurons, but also reduce the amount of NT-3 required for the survival and differentiation of these cells. These results may provide an experimental basis for the maximum replacement of dead neurons by neural stem cell transplant after spinal cord injury (SCI).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Neurotrophin-3 on Differentiation of Rat Hair Follicle Stem Cells into Neural Like Cells

Purpose: The aim of this study was to evaluate the effect of NT-3 on the decrease of the differentiation time of bulge stem cells of rat hair follicle from neuron like cells.Materials and Methods: The bulge region of the rat whisker was isolated from and cultured in DMEM/F12 supplemented with epidermal growth factor (EGF) in 3 groups for 7, 8 and 9 days .Then 10 ng/ml NT-3 was added to each gro...

متن کامل

The Effect of Rosmarinic Acid in Neural Differentiation of Wartons Jelly-derived Mesenchymal Stem Cells in Two Dimensional and Three Dimensional Cultures using Chitosan-based Hydrogel

Numerous studies have shown the positive effects of rosmarinic acid on the nervous system. Rosmarinic acid as a herbal compound with anti-inflammatory effects can prevent the destructive effect of inflammation on the nervous system. Furthermore, various studies have emphasized the advantages of three dimensional (3D) culture over the two dimensional (2D) culture of cells. In this study, thermos...

متن کامل

Trans-differentiation of the Adipose Tissue-Derived Stem Cells into Neuron-Like Cells Expressing Neurotrophins by Selegiline

Background: Adult stem cells (ASC) are undifferentiated cells found throughout the body. These cells are promising tools for cell replacement therapy in neurodegenerative disease. Adipose tissue is the most abundant and accessible source of ASC. This study was conducted to evaluate effect of selegiline on differentiation of adipose-derived stem cells (ADSC) into functional neuron-like cells (NL...

متن کامل

New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation

Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem ...

متن کامل

Expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition

Objective(s): Studies have confirmed that microgravity, as a mechanical factor, influences both differentiation and function of mesenchymal stem cells. Here we investigated the effects of simulated microgravity on neural differentiation of human adipose-derived stem cells (ADSCs). Materials and Methods:We have used a fast rotating clinostat (clinorotation) to simulate microgravity condition. R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 30 28  شماره 

صفحات  -

تاریخ انتشار 2009